Chapter -1 - 知识总结

常见带电体电场与电势

带电体类型 电场强度 E\overrightarrow{E} 电势 φ(r)\varphi(r) 备注
点电荷 q4πε0r2er\dfrac{q}{4\pi\varepsilon_0 r^2} \overrightarrow{e_r} q4πε0r\dfrac{q}{4\pi\varepsilon_0 r} 无穷远处电势为 0
电偶极子 14πε0r3[3(pr)rr2p]\dfrac{1}{4\pi\varepsilon_0r^3} \left[ \dfrac{3(\overrightarrow{p} \cdot \overrightarrow{r})\overrightarrow{r}}{r^2} - \overrightarrow{p} \right] pr4πε0r3\dfrac{\overrightarrow{p} \cdot \overrightarrow{r}}{4\pi\varepsilon_0 r^3} p\overrightarrow{p} 为电偶极矩
点电荷系 iqi4πε0rri3(rri)\sum\limits_i \dfrac{q_i}{4\pi\varepsilon_0 |\overrightarrow{r} - \overrightarrow{r_i}|^3} (\overrightarrow{r} - \overrightarrow{r_i}) iqi4πε0rri\sum\limits_i \dfrac{q_i}{4\pi\varepsilon_0 |\overrightarrow{r} - \overrightarrow{r_i}|} qiq_i 为第 ii 个点电荷
无限长均匀带电直线 λ2πε0rer\dfrac{\lambda}{2\pi\varepsilon_0 r} \overrightarrow{e_r} λ2πε0lnr0r\dfrac{\lambda}{2\pi\varepsilon_0} \ln \dfrac{r_0}{r} λ\lambda 为线电荷密度,r0r_0 处电势为 0
无限大均匀带电平面 σ2ε0en\dfrac{\sigma}{2\varepsilon_0} \overrightarrow{e_n} φ(r)=σ2ε0x\varphi(r) = -\dfrac{\sigma}{2\varepsilon_0} |x| σ\sigma 为面电荷密度,平面处电势为零
均匀带电薄球壳 {q4πε0r2err>R0r<R\begin{cases} \dfrac{q}{4\pi\varepsilon_0 r^2} \overrightarrow{e_r} & r > R \\[1em] 0 & r < R \end{cases} {q4πε0rrRq4πε0RrR\begin{cases} \dfrac{q}{4\pi\varepsilon_0 r} & r \geq R \\[1em] \dfrac{q}{4\pi\varepsilon_0 R} & r \leq R \end{cases} RR 为球壳半径
均匀带电球体 {q4πε0r2err>Rqr4πε0R3err<R\begin{cases} \dfrac{q}{4\pi\varepsilon_0 r^2} \overrightarrow{e_r} & r > R \\[1em] \dfrac{q r}{4\pi\varepsilon_0 R^3} \overrightarrow{e_r} & r < R \end{cases} {q4πε0rrRq4πε0R(32r22R2)rR\begin{cases} \dfrac{q}{4\pi\varepsilon_0 r} & r \geq R \\[1em] \dfrac{q}{4\pi\varepsilon_0 R} \left( \dfrac{3}{2} - \dfrac{r^2}{2R^2} \right) & r \leq R \end{cases} RR 为球体半径
均匀带电细圆环 qx4πε0(x2+R2)3/2ex\dfrac{q x}{4\pi\varepsilon_0 (x^2 + R^2)^{3/2}} \overrightarrow{e_x} φ(x)=q4πε0x2+R2\varphi(x) = \dfrac{q}{4\pi\varepsilon_0 \sqrt{x^2 + R^2}} 轴线上电场,xx 为轴线上距离
无限长均匀带电薄圆筒 {λ2πε0rerr>R0r<R\begin{cases} \dfrac{\lambda}{2\pi\varepsilon_0 r} \overrightarrow{e_r} & r > R \\[1em] 0 & r < R \end{cases} {λ2πε0lnRrr>R0rR\begin{cases} \dfrac{\lambda}{2\pi\varepsilon_0} \ln \dfrac{R}{r} & r > R \\[1em] 0 & r \leq R \end{cases} λ\lambda 为线电荷密度,r=Rr=R 处电势为零
均匀带电圆环 σx2ε0(1x2+R121x2+R22)ex\dfrac{\sigma x}{2\varepsilon_0} \left( \dfrac{1}{\sqrt{x^2 + R_1^2}} - \dfrac{1}{\sqrt{x^2 + R_2^2}} \right) \overrightarrow{e_x} φ(x)=σ2ε0(x2+R22x2+R12)\varphi(x) = \dfrac{\sigma}{2\varepsilon_0} \left( \sqrt{x^2 + R_2^2} - \sqrt{x^2 + R_1^2} \right) 轴线上电场,σ=qπ(R22R12)\sigma = \dfrac{q}{\pi(R_2^2 - R_1^2)}
无限长均匀圆筒 {λ2πε0rerr>R2ρ(r2R12)2ε0rerR1<r<R20r<R1\begin{cases} \dfrac{\lambda}{2\pi\varepsilon_0 r} \overrightarrow{e_r} & r > R_2 \\[1em] \dfrac{\rho (r^2 - R_1^2)}{2\varepsilon_0 r} \overrightarrow{e_r} & R_1 < r < R_2 \\[1em] 0 & r < R_1 \end{cases} {λ2πε0lnR2rr>R2ρ4ε0[R22r22R12lnR2r]R1<r<R2ρ4ε0[R22R12+2R12lnR2R1]r<R1\begin{cases} \dfrac{\lambda}{2\pi\varepsilon_0} \ln \dfrac{R_2}{r} & r > R_2 \\[1em] \dfrac{\rho}{4\varepsilon_0} \left[ R_2^2 - r^2 - 2R_1^2 \ln \dfrac{R_2}{r} \right] & R_1 < r < R_2 \\[1em] \dfrac{\rho}{4\varepsilon_0} \left[ R_2^2 - R_1^2 + 2R_1^2 \ln \dfrac{R_2}{R_1} \right] & r < R_1 \end{cases} λ=ρπ(R22R12)\lambda = \rho \pi (R_2^2 - R_1^2)r=R2r=R_2 处电势为零

© 2024 本网站由 Ywang22 使用 Stellar 创建
总访问 次 | 本页访问
共发表 64 篇 Blog(s) · 总计 146.2k 字